Larger brain size indirectly increases vulnerability to extinction in mammals.
نویسندگان
چکیده
Although previous studies have addressed the question of why large brains evolved, we have limited understanding of potential beneficial or detrimental effects of enlarged brain size in the face of current threats. Using novel phylogenetic path analysis, we evaluated how brain size directly and indirectly, via its effects on life history and ecology, influences vulnerability to extinction across 474 mammalian species. We found that larger brains, controlling for body size, indirectly increase vulnerability to extinction by extending the gestation period, increasing weaning age, and limiting litter sizes. However, we found no evidence of direct, beneficial, or detrimental effects of brain size on vulnerability to extinction, even when we explicitly considered the different types of threats that lead to vulnerability. Order-specific analyses revealed qualitatively similar patterns for Carnivora and Artiodactyla. Interestingly, for Primates, we found that larger brain size was directly (and indirectly) associated with increased vulnerability to extinction. Our results indicate that under current conditions, the constraints on life history imposed by large brains outweigh the potential benefits, undermining the resilience of the studied mammals. Contrary to the selective forces that have favored increased brain size throughout evolutionary history, at present, larger brains have become a burden for mammals.
منابع مشابه
Brain size is correlated with endangerment status in mammals.
Increases in relative encephalization (RE), brain size after controlling for body size, comes at a great metabolic cost and is correlated with a host of cognitive traits, from the ability to count objects to higher rates of innovation. Despite many studies examining the implications and trade-offs accompanying increased RE, the relationship between mammalian extinction risk and RE is unknown. I...
متن کاملAn allometric approach to quantify the extinction vulnerability of birds and mammals.
Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relati...
متن کاملNew macroecological insights into functional constraints on mammalian geographical range size.
Understanding the determinants of variation in the extent of species distributions is a fundamental goal of ecology. The diversity of geographical range sizes (GRSs) in mammals spans 12 orders of magnitude. A long-standing macroecological model of this diversity holds that as body size increases, species are increasingly restricted to occupying larger GRS. Here, we show that the body size-GRS r...
متن کاملMultiple causes of high extinction risk in large mammal species.
Many large animal species have a high risk of extinction. This is usually thought to result simply from the way that species traits associated with vulnerability, such as low reproductive rates, scale with body size. In a broad-scale analysis of extinction risk in mammals, we find two additional patterns in the size selectivity of extinction risk. First, impacts of both intrinsic and environmen...
متن کاملMammal extinctions, body size, and paleotemperature.
There is a general inverse relationship between the natural logarithm of tooth area (a body size indicator) of some fossil mammals and paleotemperature during approximately 2.9 million years of the early Eocene in the Bighorn Basin of northwest Wyoming. When mean temperatures became warmer, tooth areas tended to become smaller. During colder times, larger species predominated; these generally b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 70 6 شماره
صفحات -
تاریخ انتشار 2016